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Zero-lag synchronization �ZLS� between two chaotic systems coupled by a portion of their signal is achieved
for restricted ratios between the delays of the self-feedback and the mutual coupling. We extend this scenario
to the case of a set of multiple self-feedbacks �Ndi

� and a set of multiple mutual couplings �Ncj
�. We demon-

strate both analytically and numerically that ZLS can be achieved when �liNdi
+�mjNcj

=0, where li ,mj �Z.
Results which were mainly derived for Bernoulli maps and exemplified with simulations of the Lang-
Kobayashi differential equations, indicate that ZLS can be achieved for a continuous range of mutual coupling
delay. This phenomenon has an important implication in the possible use of ZLS in communication networks.

DOI: 10.1103/PhysRevE.81.036215 PACS number�s�: 05.45.�a

I. INTRODUCTION

Two identical chaotic systems starting from almost iden-
tical initial states, end up in completely uncorrelated trajec-
tories �1,2�. On the other hand, chaotic systems which are
mutually coupled by some of their internal variables can syn-
chronize to a collective dynamical behavior �3–6�. The
mechanism of the ZLS phenomenon has been subject of con-
troversial debate, where the main puzzle is how two or more
distant dynamical elements can synchronize at zero-lag even
in the presence of non-negligible delays in the transfer of
information between them.

The phenomenon of ZLS was also experimentally ob-
served in the synchronization of two mutually coupled cha-
otic semiconductor lasers, where the optical path between the
lasers is a few orders of magnitude greater than the coher-
ence length of the lasers �7–12�. This phenomenon has at-
tracted a lot of attention, mainly because of its potential for
secure communication over a public channel �7,13,14�. In
�15� it was recently shown that it is possible to use the ZLS
phenomenon of two mutually coupled symmetric chaotic
systems for a novel key-exchange protocol generated over a
public channel. Note that in contrary to a public scheme
which is based on mutual coupling, private-key secure com-
munication is based on a unidirectional coupling �16,17� and
it is susceptible to an attacker which has identical parameters
and is coupled to the transmitted signal. The generation of
secure communication over a public channel requires mutual
coupling and was only proven to be secure based on the ZLS
phenomenon �15�.

Recently, it has been shown both numerically and analyti-
cally that various architectures of coupled chaotic systems
can exhibit ZLS �18–27�. The main disadvantage of this phe-
nomenon is that ZLS even between two mutually coupled
chaotic systems can be achieved only for very restricted ar-
chitectures and it is highly sensitive for mismatch between
the delays of the mutual coupling and the self-feedback �28�.
These delays have to be identical or have to fulfill special
ratios. Such a realization might exist in a time-independent
point-to-point communication, but it is far from the realm of
communication networks.

In this paper we first demonstrate the constraint that ZLS
is achieved only for very restricted ratio between the self-

feedback and the mutual delays, lNd=mNc, where l and m
are �small� integers. We next show that one can overcome
this constraint when multiple self-feedbacks are used. The
extension of the setup with multiple self-feedbacks to in-
clude multiple mutual couplings is also discussed and reveals
a general condition for the emergence of zero-lag synchroni-
zation in mutually coupled delayed chaotic systems, even
when the systems have different self-feedback delays. For
the simplicity of the presentation we mainly concentrate on
the Bernoulli map, where results of simulations can be com-
pared to an analytical solution �21,29�. However we ob-
served the reported phenomena for other chaotic maps and
systems as well, and this is exemplified by the ZLS of mu-
tually coupled chaotic semiconductor lasers, depicted by the
Lang-Kobayashi differential equations �7,30�.

The paper is an extension of �31�. It contains a full de-
tailed description of the analytical methods and simulations
of various architectures, new analytical results and relations
and discussions that were not included in �31�. The paper is
organized as follows: in Sec. II Bernoulli maps with single
self-feedback and single mutual coupling are introduced and
analyzed. The extension to multiple self-feedbacks is exam-
ined in Sec. III, where setups with multiple mutual couplings
are examined in Sec. IV. The general scenario of multiple
self-feedbacks and multiple mutual couplings is investigated
in Sec. V. The extension of the results to mutually coupled
chaotic diode lasers depicted by the Lang-Kobayashi differ-
ential equations is presented in Sec. VI. The Bernoulli maps
in the limit �y1 is examined in Sec. VII and in the Appen-
dix. A short discussion about two Bernoulli maps with dif-
ferent slope is shown in Sec. VIII. A general discussion and
a summary of the results is presented in Sec. IX.

II. SINGLE SELF-FEEDBACK AND SINGLE
MUTUAL COUPLING

The cornerstone of our system is the simplest chaotic
map, the Bernoulli map, f�x�= �ax�mod 1, which is chaotic
for a�1. The dynamical equations of two mutually coupled
chaotic units, X and Y, with one self-feedback �see Fig. 1�
are given by
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xn = �1 − ��f�xn−1� + ��f�xn−Nd
� + ��1 − ��f�yn−Nc

� ,

yn = �1 − ��f�yn−1� + ��f�yn−Nd
� + ��1 − ��f�xn−Nc� , �1�

where Nd and Nc are the delays of the self-feedback and the
mutual coupling, respectively �21�. The quantities �1−��, ��
and ��1−�� stand for the strength of the internal dynamics,
self-feedback and the mutual coupling, respectively.
�1−�� ,�� ,��1−��� �0,1� and their summation is equal to
1. Note that when there is no coupling between the two units,
the entire signal is the internal dynamics, f�xn−1� , f�yn−1�, and
the self-feedback, f�xn−Nd� , f�yn−Nd�, i.e., the whole signal
goes through the unit and the strength of the mutual coupling
is zero, �=1. In this case the unit is chaotic.

The solution of the relative distance between the trajecto-
ries of the two mutually coupled chaotic Bernoulli maps can
be analytically examined �21,29�. Let us denote by �xn and
�yn small perturbations from the trajectories xn and yn, re-
spectively. For a small perturbation we can linearize the
equations into

�xn = �1 − ��a�xn−1 + ��a�xn−Nd
+ ��1 − ��a�yn−Nc

,

�yn = �1 − ��a�yn−1 + ��a�yn−Nd
+ ��1 − ��a�xn−Nc

. �2�

Using the ansatz �xn=cn�x0 and �yn=cn�y0 we can get

�0 1

1 0
	��x0

�y0
	 =

c − �1 − ��a − ��ac1−Nd

a��1 − ��c1−Nc
��x0

�y0
	 . �3�

This matrix has two eigenvalues �1=1, which describes re-
laxation perturbations parallel to the synchronization mani-
fold, and �2=−1 which describes relaxation perturbations
perpendicular to the synchronization manifold. After substi-
tuting �2, in order to find the stable solution, one finds that
the characteristic polynomial is given by

c − �1 − ��a − ��ac1−Nd + ��1 − ��ac1−Nc = 0, �4�

where c=e�+i� and �=ln
c
 is the Lyapunov exponent. Equa-
tion �4� determines the entire spectrum of the Lyapunov ex-
ponents of the coupled systems. However, only the expo-
nents transversal to the synchronization manifold are
important for the stability of the synchronization. Equation
�4� is a polynomial of order 	=max�Nc ,Nd�, therefore it has
	 solutions, Lyapunov exponents. The synchronization is
stable only when �i
0∀ i except the one parallel to the syn-
chronization manifold, hence checking only the maximal one
is sufficient.

For small values of a�1−��, i.e., �→1, the second term in
the LHS of the characteristic polynomial �4� is negligible and
the equation is reduced to

c = a��c1−Nd − a��1 − ��c1−Nc. �5�

which means that the problem decomposes to a time lattice.
Analytical results have been found in �32� with the following
ansatz. Using c= 
c
ei� on the unit circle 
c
=1, the border to
synchronization, this equation is reduced to

1 = a��e−i�Nd − a��1 − ��e−i�Nc. �6�

This equation describes the border of synchronization �for
�→1�, since for 
c

1�
c
�1� the maximal Lyapunov expo-
nent is negative �positive� and synchronization is achieved
�not achieved�. In order to find the solutions for the coeffi-
cients a�� and a��1−�� beyond which no synchronization is
possible we separate Eq. �6� into a real and an imaginary
parts,

1 = a�� cos��Nd� − a��1 − ��cos��Nc� ,

0 = a�� sin��Nd� − a��1 − ��sin��Nc� . �7�

By taking 
cos��Nd�
 , 
cos��Nc�
=1 and sin��Nd� , sin��Nc�
=0, one can find the upper and lower bounds of � for which
ZLS is achieved in the limit of �→1,

�� =
a � 1

2a
. �8�

On the ZLS borders the two Eqs. �7� have two variables
��Nd ,�Nc�, and therefore solvable. These equations have a
variety of solutions due to the periodicity of the trigonomet-
ric functions, sin and cos, and their solutions have the fol-
lowing form

lNd = mNc,l,m � Z . �9�

Obviously this equation is valid for any two integer numbers,
Nd and Nc, and does not limit the ratio between them. Ob-
servation on the Lyapunov exponents reveals that our condi-
tion for ZLS is not sufficient. To be on the ZLS border it is
needed that 
cmax
=1 �and not only 
c
=1�. In order to verify
whether 
cmax
=1, we solved numerically the characteristic
polynomial �4�. Results indicate that independent of 10
�Nd�40, 
cmax
=1 is valid in the upper bound only when

lNd = Nc, �10�

where l is a bounded integer, and in the lower bound only
when

Nd = mNc, �11�

where m is a bounded integer. This is consistent with our
result in �32�. For instance, for a=1.1 and �=1, 
cmax
=1 is
fulfilled only for m , l
21. Note that Eqs. �10� and �11� are
necessary but not sufficient. However far from the boarder of
synchronization, for intermediate values of �, ZLS is
achieved when Eq. �9� is fulfilled, where both m and l are
bounded and greater or equal to 1. Results for a=1.1 are
exemplified in Fig. 2. The left panel is for �=0.98, �=0.8
and the right one for �=0.98, �=0.4. For the left panel,
ZLS is achieved for the pairs �m , l�= �−1, l� where l
=1,2 , . . . ,10, �3,−2� and �3,−1�. For the right panel ZLS is
achieved for the pairs �−1, l� l=1, . . . ,5, �3,−1�, �5,−1�,

dN cN
X   Y dN

FIG. 1. A schematic of two mutually coupled units at a distance
Nc with one self-feedback with a delay equals to Nd.
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�7,−1�, �3,−2�, and �5,−2�. The possible values of l and m
depends on the parameters of the model.

In the event that �y1, the second term in the LHS of the
characteristic polynomial �4� is no longer negligible. This
results in width of the straight lines in �Nd ,Nc� parameter
space, as depicted in Fig. 3 for a=1.1, �=0.9, �=0.8 �left
panel� and for a=1.1, �=0.9, �=0.4 �right panel�. For the
left panel, ZLS is achieved for the pairs �m , l�= �−1, l� where
l=1,2 , . . . ,10 and �3,−1�. For the right panel ZLS is
achieved for the pairs �−1, l� l=1, . . . ,4, �3,−1�, �5,−1�,
�7,−1�, �3,−2�, and �5,−2� �33�. Hence the ZLS points are
within the enlarged regime 
lNd−mNc
�����, where ����
�2 for �=0.9 and is larger for smaller �.

In order to examine the behavior of the maximal l, lmax,
for which ZLS is achieved we find lmax as a function of �a
=a−1 by solving semianalytically the characteristic polyno-
mial �4� and simulating the dynamical Eqs. �1� with �
=0.999, so that no extensions and deviations will occur. Re-
sults are depicted in Fig. 4 for �=0.8 �stars� and �=0.4
�dots�, with the corresponding linear fits. Results indicate
that

lmax  �a
−� =

1

�a − 1�� , �12�

where simulations indicate that

���� � 0.5 �13�

and � is only weakly dependent on �. One can also find
analytically an upper bound for Nc �see Appendix�.

Nc 

a�2� − 1� + 1

a − 1
Nd +

2a�� − 1�
a − 1

, �14�

indicating an upper bound for lmax
1

a−1 . In the weak chaos
limit, a→1+, and �→1 we can see that lmax→�.

More detailed investigations of the case of small � will be
discussed in Sec. VII.

III. MULTIPLE SELF-FEEDBACKS

A. Double self-feedbacks

The constraint �9� indicates that ZLS can be achieved
only when Nc is accurately known, which is far from the
realm of communication networks. In order to increase the
possible ZLS range of Nc for a fixed Nd, we add more self-
feedbacks, as depicted in Fig. 5. The generalized dynamical
equations for the case of multiple self-feedbacks are given by

0 100
0
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200

N
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N
c

0 100
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100

200

N
d

N
c

FIG. 2. �Color online� Simulations and semianalytical results for
the ZLS points in the parameter space �Nd ,Nc� with a=1.1, �
=0.98, �=0.8 left panel and a=1.1, �=0.98, �=0.4 right panel.

0 100
0

100

200

N
d

N
c

0 100
0

100

200200

N
d

N
c

FIG. 3. �Color online� Simulations and semianalytical results for
the ZLS points in the parameter space �Nd ,Nc� with a=1.1, �
=0.9, �=0.8 left panel and a=1.1, �=0.9, �=0.4 right panel.
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FIG. 4. �Color online� Analytical results of lmax as a function of
�a= �a−1� with �=0.999 for �=0.8 �stars� and �=0.4 �dots�. The
solid and the dashed lines are the corresponding linear fits.

idN
idN   

cN
X Y

FIG. 5. A schematic of two mutually coupled units at a distance
Nc with multiple self-feedbacks.
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xn = �1 − ��f�xn−1� + ���
i=1

M

�i f�xn−Ndi
� + ��1 − ��f�yn−Nc

� ,

yn = �1 − ��f�yn−1� + ���
i=1

M

�i f�yn−Ndi
� + ��1 − ��f�xn−Nc

� ,

�15�

where M stands for the number of self-feedbacks and the
parameter �i indicates the weight of the ith self-feedback
fulfilling the constraint �i=1

M �i=1. In order to reveal the in-
terplay between possible Nc and a given set of �Ndi

� which
lead to ZLS we first examine in detail the case of M =2. In
this scenario the characteristic polynomial is

c − a�1 − �� − a���1c1−Nd1 − a���2c1−Nd2 + a��1 − ��c1−Nc

= 0. �16�

Similarly to the simple case, with single self-feedback and
single mutual coupling, when a�→1 one can show that far
from the border of synchronization ZLS is achieved when

l1Nd1
+ l2Nd2

= mNc, �17�

where l1, l2 and m are bounded integers. Calculation of the
largest Lyapunov exponent obtained from the solution of the
characteristic polynomial, Eq. �16� which was confirmed by
the results of simulations for �=0.98, is depicted in Fig. 6. It
confirms that for �→1 ZLS can be achieved only when Eq.
�17� is fulfilled. Numerical solution of the maximal
Lyapunov exponent of the characteristic polynomial �16� as
well as simulations of the dynamical Eqs. �15� indicate that
the same type of solution, Eq. �17�, holds also for the entire
regime where 
c

1.

Similarly to the previous section, when �y1 the second
term in the LHS of the characteristic polynomial �16� is no
longer negligible. Simulations and semianalytical calcula-
tions results depict that this result in a small width, and the
ZLS points are in an enlarged regime 
l1Nd1

+ l2Nd2
+mNc


�����, where ��2 for �=0.9 and is larger for smaller �, see
Sec. VII.

Figure 6 indicates that for �=0.98, �=0.8 �34� for in-
stance, m can take the integers �1 and �3 only. In order to
examine the possible range of the integers �li� we ran an
exhaustive search simulation, −6� li�6 and m= �1, �3,
and obtained integer Nc from Eq. �17�. Figure 7 depicts re-
sults of such an exhaustive search and the analytical solution
of appropriate characteristic polynomial, for �=0.999 so that
no extensions and deviations will occur. The comparison be-
tween the results indicates the following main conclusions:
all the ZLS points obtained from the semianalytical calcula-
tion �red points, lower line� are achieved also from the ex-
haustive search �blue points, upper line�, i.e., all the semi-
analytical points are described by Eq. �17�, when −6� li
�6 and m= �1, �3 and a similar range of Nc was obtained.

We also analyze in detail the case of triple self-feedbacks,
Eq. �15� with M =3, and find that for �→1 ZLS points fol-
low the equation l1Nd1

+ l2Nd2
+ l3Nd3

+mNc=0, and in this
case the ZLS points form planes. However, when �y1

l1Nd1

+ l2Nd2
+ l3Nd3

+mNc
�����, where ��1�=0 and in-
creases as � decreases.

B. Multiple self-feedbacks

The generalization of the characteristic polynomial to the
case of multiple self-feedbacks is

c − a�1 − �� − a���
i=1

M

�ic
1−Ndi + a��1 − ��c1−Nc = 0.

�18�

Similarly to the previous subsections, when a�→1 one can
show that far from the border of synchronization ZLS is
achieved when

0 100 200 300 400 500
0

100

200

300

400

500

N
d

1

N
d

2

FIG. 6. �Color online� Simulations and semianalytical results for
the ZLS points in the parameter space �Nd1

,Nd2
� for Nc=101, a

=1.1, �=0.98, �=0.8, and �i=1 /2.

0 200 400 600 800

N
c

300 350 400

(a) (b)

exhaustive
search

simulations+
analytics

FIG. 7. �Color online� ZLS for two mutually coupled Bernoulli
maps with a=1.1, �=0.999 and �=0.8 and with two self-feedbacks,
Nd1

=25, Nd2
=87. ZLS points obtained from the exhaustive search

of Eq. �17� with m= �1, �3 and li in the range �−6,6� �blue
points, upper line�. The ZLS points obtained from simulation and
semianalytical results �red points, lower line�. The inset is a blow up
of a section of possible Nc with ZLS.
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�
i=1

M

liNdi
+ mNc = 0, �19�

where li and m take bounded integer values. This solution
holds also in the entire regime where 
c

1.

This generalization was indeed confirmed in simulations
and solving the characteristic polynomials with up to M =7.
Below we exemplify the solution of M =4, Ndi
=11,15,18,150. We select one remarkably large Nd such
that we can see its effect on the range of Nc where ZLS is
achieved. To measure the quality of the ZLS we used the
correlation function, which is defined by

C =
xnyn� − xn�yn�

�xn
2� − xn�2�yn

2� − yn�2
, �20�

where C=1 indicates complete ZLS and  . . . � stands for an
average over the last 1000 time steps. The correlation func-
tion, C, obtained in simulations is depicted in Fig. 8 and
indicates the following results. Multiple self-feedbacks result
in a continuous range of ZLS for Nc, hence it is not required
to know exactly the mutual distance �value�, Nc. Panel �a� of
Fig. 8 indicates that there are at least seven continuous ZLS
regimes, each one of them is centered at 150l4, where l4
=0 ,1 , . . . ,6 and the plateaus are extended ��60 around the
centers �slightly decreases with increasing l4�. This width,
�60, is much smaller than the ZLS range of the only three
short self-feedbacks 11,15,18 which at �=0.9������2� was
found to be ��1,150�, indicating that the effective l1, l2 and
l3 in Eq. �19� are less than 6. This discrepancy is a result of
the dominated weight of N4=150, �4=0.75, in Fig. 8�a�. For
a smaller weight for the largest delay 150, �4=0.35, panel
�b� of Fig. 8, a ZLS is continuously achieved up to Nc
�700. In this case a weak weight for the largest delay results
in limited l4 which takes the values of 0,1,2,3,4 only, and we
expect ZLS in four continuous regimes centered around Nc
=0, 150, 300, 450, and 600. However these four regimes are
now merged by the �150 width inspired by the strengthened
weight for the short self-feedbacks, �1=�2=�3=0.65 /3 �35�.

In the general case there is an interplay between the fol-
lowing three parameters characterizing the set of the delay
times: Ndmax

which is comparable to Nc, �Ndi
��Ndmax

and

�i=Ndi+1
−Ndi

i=1, . . .M −2, where �Ndi
� are arranged in an

increasing rank order. For instance, the following three sets
of four self-feedbacks �2,6,9,150�, �11,15,18,150�,
�80,84,87,150� are characterized by the same Ndmax

, �1, and
�2. What is the main difference between the ZLS profile of
these sets and which set maximizes the continuous range of
ZLS? The first set opens only a small continuous ZLS regime
��20 for parameters of panel �a�� around 150l4, since the
time delays are very short. The third set almost does not open
a continuous regime of ZLS, since Nd1

,Nd2
,Nd3

��1 ,�2.
The maximal continuous ZLS range is achieved when short
delays Nd1

,Nd2
,Nd3

are comparable with �6�1 ,6�2 �see Eq.
�19�� which is a case of the second set.

In the event lmax in Eq. �19� is independent of Ndi
, one can

easily prove that the set

Ndi
= �2lmax + 1�i, �21�

where i=0,1 , . . . ,M maximizes the continuous range of
zero-lag synchronization, �1, lmax�i=1

M �2lmax+1�i�, however,
practically lmax is found to be anisotropic, especially in the
case of a variety of delays.

Most of the reported simulations were carried out from
close initial conditions �xn−yn�10−5�, however, one can find
�� ,�� such that ZLS is achieved from random initial condi-
tions at a comparable synchronization time to ZLS with only
one time delay, Nc=Nd.

IV. MULTIPLE MUTUAL COUPLINGS

A. Double mutual couplings

In a similar manner to the case of multiple self-feedbacks,
one can extend the scenario of multiple self-feedbacks to the
case of multiple mutual couplings �see Fig. 9�, where the
dynamical equations are given by

xn = �1 − ��f�xn−1� + ��f�xn−Nd
� + ��1 − ���

i=1

M

�i f�yn−Nci
� ,

yn = �1 − ��f�yn−1� + ��f�yn−Nd
� + ��1 − ���

i=1

M

�i f�xn−Nci
� ,

�22�

where M stands for the number of mutual couplings and the
parameter �i indicates the weight of the ith mutual coupling
fulfilling the constraint �i=1

M �i=1. In order to reveal the in-
terplay between possible Nd and a given set of �Nci

� which
lead to ZLS we first examine in detail the case of M =2. In
this scenario the characteristic polynomial is

0 500 1000 14001400

0

0.5

1

N
c

C

0 500 1000 1400

0

1

0.5

N
c

C

(b)

(a)

FIG. 8. �Color online� Simulations results of the correlation, C,
as a function of Nc for a=1.1, �=0.9 and �=0.8 and four Ndi
=11,15,18,150. The weight of the self-feedbacks, �i in Eq. �15�,
are in �a� �1=�2=�3=0.25 /3 and �4=0.75 and in �b� �1=�2=�3

=0.65 /3 and �4=0.35

dN X   Y dN

icN

FIG. 9. A schematic of two mutually coupled units with multiple
mutual couplings with one self-feedback with a delay equals to Nd.
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c − �1 − ��a − a���c1−Nd + a��1 − ���1c1−Nc1 + a��1

− ���2c1−Nc2 = 0. �23�

Similarly to the case of single self-feedback and single
mutual coupling with �y1, Sec. II Eqs. �4�–�9�, one can
show that far from the border of synchronization ZLS is
achieved when

m1Nc1
+ m2Nc2

+ lNd = 0, �24�

where m1, m2 and l take bounded integer values. This solu-
tion holds also in the entire regime where 
c

1. Figure 10
depicts the points of ZLS for two mutual couplings, Nc1

and
Nc2

, for a given Nd=101. Results of simulations were con-
firmed by the calculation of the largest Lyapunov exponent
obtained from the solution of the characteristic polynomial,
Eq. �23�. The ZLS points �Nc1

,Nc2
� form again straight lines,

obeying Eq. �24�. For �y1 the lines have a small width,
hence a more accurate equation for the ZLS points is

m1Nc1

+m2Nc2
+nNd
�����.

A careful examination of Fig. 10 indicates that four lines
of ZLS emerge from the origin. These four lines are charac-
terized by

m1 = 2, m2 = − 1, l = 0,

m1 = − 1, m2 = 2, l = 0,

m1 = 2, m2 = − 3, l = 0,

m1 = − 3, m2 = 2, l = 0, �25�

indicating that ZLS is achievable independent of Nd. In par-
ticular, ZLS is achievable in a face-to-face configuration
where Nc2

=2Nc1
or 2Nc2

=3Nc1
with the lack of a self-

feedback �Nd=0�, Fig. 17�b� below.

B. Multiple mutual couplings

The generalization of the characteristic polynomial to the
case of multiple self-feedbacks is

c − a�1 − �� − a��c1−Ndi + a��1 − ���
i=1

M

�ic
1−Nc = 0.

�26�

Similarly to the previous section, when �→0 one can show
that far from the border of synchronization ZLS is achieved
when

lNd + �
i=1

M

miNci
= 0, �27�

where li and m take bounded integer values. This solution
holds also in the entire regime where 
c

1. This generali-
zation was indeed confirmed in simulations and solving the
characteristic polynomials with up to M =7.

V. MULTIPLE SELF-FEEDBACKS AND MULTIPLE
MUTUAL COUPLINGS

A. Identical units

The generalization of the above-mentioned setups to in-
clude both multiple self-feedbacks, �Ndi

�i=1, . . . ,Ms and
multiple mutual couplings, �Ncj

�j=1, . . . ,Mm, is straightfor-
ward �see Fig. 11�. The generalized dynamical equations for
this scenario are given by

xn = �1 − ��f�xn−1� + ���
i=1

Ms

�i f�xn−Ndi
� + ��1

− ���
j=1

Mm

� j f�yn−Ncj
� ,

yn = �1 − ��f�yn−1� + ���
i=1

Ms

�i f�yn−Ndi
� + ��1

− ���
j=1

Mm

� j f�xn−Ncj
� , �28�

where Ms and Mm stand for the number of multiple self-
feedbacks and multiple mutual couplings, respectively. The
parameter �i indicates the weight of the ith self-feedback and
� j the weight of the jth mutual coupling, fulfilling the con-
straints �i=1

Ms �i=1 and � j=1
Mm� j =1.

Simulation results as well as semianalytical calculation of
the �Nd1

,Nd2
� parameter space for double self-feedbacks,

0 100 200 300
0

100

200

300

N
c

1

N
c

2

FIG. 10. �Color online� Simulations and semianalytical results
for the ZLS points in the parameter space �Nc1

,Nc2
� for Nd=101,

a=1.1, �=0.99, �=0.5 and �i=1 /2.

X   Y

jcN

idN
  idN

FIG. 11. A schematic of two mutually coupled lasers with mul-
tiple self-feedbacks and multiple mutual couplings.
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Ms=2, and double mutual couplings, Mm=2, for fixed Nc1
,

Nc2
, �, �, a, �i and �i, are depicted in Fig. 12 and indicate

that the ZLS lines obey the following generalized equation:

�
i=1

Ms

liNdi
+ �

j=1

Mm

mjNcj
= 0, �29�

where the lines are characterized by �l1 , l2 ,m1 ,m2� and 
li

�5 and 
mi
�9.

B. Nonidentical units

The most general setup is where each one of the mutually
coupled units has a different set of self-feedback delays. The
general dynamical equations are given by

xn = �1 − ��f�xn−1� + ���
i=1

Ms
1

�i
1f�xn−Ndi

1 � + ��1

− ���
j=1

Mm

� j f�yn−Ncj
� ,

yn = �1 − ��f�yn−1� + ���
i=1

Ms
2

�i
2f�yn−Ndi

2 � + ��1

− ���
j=1

Mm

� j f�xn−Ncj
� , �30�

where Ms
1 , �Ndi

1 � , ��i
1� and Ms

2 , �Ndi

2 � , ��i
2� stand for the num-

ber of self-couplings, the self-coupling delays and the rela-
tive self-coupling weights of the first and the second unit,
respectively. Let us first look at the simple scenario of two
nonidentical units with single self-feedback, Ms

1=Ms
2=1, and

single mutual coupling, Mm=1, as described in Fig. 13 reveal
that only for

Nc =
Nd

1 + Nd
2

2
�31�

and �=0.5 the two units are synchronized and with a shift of

� =
Nd

1 − Nd
2

2
, �32�

when xn+�=yn, meaning the cross correlation which is de-
fined by

C��� =
xn+�yn� − xn+��yn�

�xn+�
2 � − xn+��2�yn

2� − yn�2
�33�

is equal to 1 for the aforementioned �, see Fig. 14. Semiana-
lytical calculation of the maximal Lyapunov exponent, using
the same method as in Eqs. �1�–�4� supports the simulations
and indicates that synchronization is achieved with the afore-
mentioned shift. The nonidentical units scenarios are more
restricted since for synchronization we demand that the self-
feedback and the mutual coupling have the same weight. For
instance, here the strength of the self-feedback is ��=0.45
and the strength of the mutual coupling is ��1−��=0.45 as
well.

In order to understand the influence of multiple self-
feedbacks and multiple mutual couplings on the sets �Ndi

1 �,
�Ndi

2 � and �Nc� for which synchronization is achieved, we add
another mutual coupling to the previous setup and found the
lack of synchronization independent of � between the units.
However, in the setup of double self-feedbacks, Ms

1=Ms
2=2,

and double mutual couplings, Mm=2, see Fig. 15, synchro-
nization is achieved only when the mutual delays are
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300

400

500

N
d
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N
d
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FIG. 12. �Color online� Simulations and semianalytical results
for the ZLS points in the parameter space �Nd1

,Nd2
� for double self

feedbacks and double mutual couplings with the parameters Nc1
=101, Nc2

=27, a=1.1, �=0.98, �=0.8, �i=1 /2 and �i=1 /2.

X   Y  
1

2
dN

  

cN
  

1

1
dN

FIG. 13. A schematic of two mutually coupled nonidentical
units with single self-feedback and single mutual coupling. Nd

1 and
Nd

2 are the self-feedback delays of unit X and Y, respectively. Nc is
the mutual delay.
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∆

C

FIG. 14. �Color online� The cross correlation as a function of �
for two nonidentical units with one self-feedback, Nd

1=87, Nd
2

=25, and one mutual coupling, Nc=
Nd

1+Nd
2

2 =56, with a=1.1, �=0.9

and �=0.5. C���=1 for �=
Nd

1−Nd
2

2 =31.
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Nc
1 =

Nd1

2 + Nd1

2

2
,

Nc
2 =

Nd2

2 + Nd2

2

2
, �34�

and the self-feedback delays fulfill the equation

Nd1

1 − Nd1

2 = Nd2

1 − Nd2

2 . �35�

In this setup the two units are synchronized with a shift of

� =
Nd1

1 − Nd1

2

2
=

Nd2

1 − Nd2

2

2
, �36�

when xn+�=yn. An example of such a scenario is depicted in
Fig. 16 for the parameters �=0.9, �=0.5,�i

1=�i
2=0.5, � j

=0.5, Nd1

1 =87, Nd2

1 =131, Nd1

2 =25, Nd2

2 =69, Nc
1=56 and Nc

2

=100.
Our results indicate that the most general scenario for the

emergence of synchronization of two mutually coupled units
with time delay couplings is given by

�
i=1

Ms
1

li
1Ndi

1 + �
i=1

Ms
2

li
2Ndi

2 + �
j=1

Mm

mjNcj
= 0. �37�

Since the synchronization achieved in nonidentical units sce-
narios is shifted synchronization �and not ZLS as in identical
units and as the issue of this paper� we do not explore deeply
the scenarios of multiple self-feedbacks and multiple mutual
couplings as we do for identical units.

VI. ZLS OF MUTUALLY COUPLED CHAOTIC LASERS

Similar phenomena of ZLS occur in simulations of two
mutually coupled semiconductor lasers depicted by the

Lang-Kobayashi equations �30�. Our simulations are based
on the version and the parameters of these equations as in
�7�, with additional time delays, Fig. 17.

Figure 18 depicts the ZLS points, correlation�0.9, in the
�Nd1

,Nd2
� parameter space for double self-feedbacks �Fig.

17�a� with only two self-feedbacks� with the parameters:
Nc=32 ns and �1=�2=�=50 ns−1, where �i and � stand for
the intensity of the self-feedbacks and the mutual coupling,
respectively. For each �Nd1

,Nd2
� point the duration of the

simulation was 3000 ns and the emergence of ZLS was esti-
mated from the measured cross correlation of the last 20
windows of 100 ns �36�. This figure demonstrates that the
ZLS points form straight lines following Eq. �17�, similarly
to the corresponding maps scenario. The main lines appear-
ing correspond the triplets �l1 , l2 ,m�= �2,−2,1� , �2,−1,
−1� , �−3,1 ,1� , �1,1 ,−m�, where m=1,3 and �l1 ,0 ,−1� , �l1 ,
−1 ,1�, where l1=1 ,2, and the corresponding triplets with l2,
due to the symmetry. Figure 19 depicts the ZLS as a function
of Nc for multiple self-feedbacks, as described in Fig. 17�a�.
Figure 19�a� examined the case of four time delays Ndi
=3,4 ,5 ,20 ns and �i=�=30 ns−1 and Fig. 19�b� the case of
6 time delays Ndi

=11,12,13,14,15,16 ns with �i=�
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1c
N

  

2cN
  

2

2
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  1

1
dN

  2

1
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FIG. 15. A schematic of two mutually coupled nonidentical
units with double self-feedback and double mutual coupling. Ndi

1 are
the self-feedback delays of unit X, Ndi

2 are the self-feedback delays
of unit Y and Nc is the mutual delay.
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FIG. 16. �Color online� The cross correlation as a function of �
for two nonidentical units with double self-feedbacks, Nd1

1

=87, Nd2

1 =131, Nd1

2 =25, Nd2

2 =69, and double mutual couplings,
Nc

1= �Nd1

2 +Nd1

2 � /2=56, Nc
2= �Nd2

2 +Nd2

2 � /2=100, with a=1.1, �

=0.9, �=0.5. C���=1 for �=
Nd1

1 −Nd1
2

2 =
Nd2

1 −Nd2
2

2 =31.
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FIG. 17. Schematics of examined setups two mutually coupled
chaotic lasers with additional delays: �a� multiple self-feedbacks,
�b� double mutual couplings with the lack of self-feedback, �c�
double mutual couplings, and double self-feedbacks.
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FIG. 18. �Color online� Simulations results for the ZLS points,
correlation�0.9, in the parameter space �Nd1

,Nd2
� for Nc=32 ns,

�1=�2=�=50 ns−1 and p=1.02.
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=25 ns−1, where for all cases the relative operation pump
current with respect to the laser threshold is p=1.02. For
each Nc the duration of the simulation was 7000 ns and the
emergence of ZLS was estimated from the measured cross
correlation of the last 20 windows of 100 ns �36�. Results
indicate that for the case of six delays ZLS is achieved in the
range ��1,80� ns where for the case of 4 time delays for
��1,45� ns �37�. These synchronization regimes can be ex-
plained by Eq. �19� with li=0, �1, �2 only. It is consistent
with our simulations of only one time delay where ZLS is
achieved for Nc= lNd with l=1,2 ,3 only �in contrast to maps
where li can be much larger, see Figs. 2–8�.

The ZLS presented in Figs. 19�a� and 19�b�, forms a one-
dimensional grid, and no extension and broadening on a time
scale of ns is expected, as for discrete-time maps, ��2. Pre-
liminary results of our simulations indicate that a similar
phenomenon occur for a setup consisting of one large self-
feedback, Ndmax

, and a few short self-feedbacks fulfilling the
constraint �i=Ndi+1

−Ndi
�0.01 ns, which is comparable

with the coherence time of the semiconductor lasers �9�. In
such an event, ZLS is achievable in a continuous range of
Nc�Ndmax

�O�1 ns�, since the space of the grid is within
the coherence time. Hence, the presented mechanism of mul-
tiple short-delay self-feedbacks might be implemented in an
experiment of mutually coupled chaotic semiconductor la-
sers using distributed self-feedbacks, and presents the robust-
ness of ZLS under an inaccurate measure of the distance
between the mutually coupled lasers �28�.

As have been shown, two maps with double mutual cou-
plings such that Nc2

=2Nc1
are synchronized for every Nd and

also stabilize the face-to-face configuration, Fig. 17�b�. We
observed this phenomenon also in simulations of mutually
coupled chaotic semiconductor lasers. For instance, simula-
tions of two chaotic lasers in face-to-face with double mutual
couplings with the lack of self-feedbacks, Fig. 17�b�, with
the parameters Nc1

=13 ns, Nc2
=26 ns and also for Nc1

=100 ns, Nc2
=200 ns, when �1=50 ns−1 and �2 was

checked for different values: 20,30, . . . ,80 ns−1. In all cases

ZLS was achieved, C�1 �see definition in Eq. �20� for con-
tinuous time�.

We also obtain ZLS between two mutually coupled semi-
conductor lasers with double self-feedbacks and double mu-
tual couplings, Fig. 17�c�, such that Eq. �29� is fulfilled:
Nd1

=7 ns, Nd2
=9 ns, Nc1

=11 ns and Nc2
=27 ns with �i

=20 ns−1, �i=40 ns−1 and p=1.02.
Synchronization can be achieved also in the general setup,

where each one of the semiconductor lasers has a different
self-feedback delay, see Fig. 13. Simulation results indicate
that similarly to mutually coupled maps, the two semicon-

ductor lasers are synchronized only for Nc=
Nd

1+Nd
2

2 and with a

shift of �=
Nd

1−Nd
2

2 . A similar setup was experimentally and
numerically examined with mutually coupled electro-optics
oscillators by adding a mirror in the coupling path �38� and
was discussed in the concept of simultaneous bidirectional
message transmission between two semiconductor lasers
�39�.

VII. LIMIT ε™1

As shown in the previous sections the accurate straight
lines with no width appear only for �→1. Taking � not close
to 1 results in two effects: extension of the ZLS lines ��
�1� and deviations from the integer multiplication between
Ndi

and Ncj
Eq. �29�.

The explanation is rooted in understanding that the inter-
nal dynamics �1−��f�xn−1� and �1−��f�yn−1� is in fact an-
other self-feedback equals to 1, Nd0

=1 �see Fig. 20�.
Hence the more accurate equation with a non-negligible

strength for the internal dynamics with an additional effec-
tive self-feedback, Nd0

=1, is

l0 + �
i=1

Ms

liNdi
+ �

j=1

Mm

mjNcj
= 0, �38�

where l0 is a bounded integer. For �→1 the weight of the
Nd0

is weak, l0=0, and its effect is invisible. However, as
depicted in Fig. 8, when one self-feedback, Ndi

, has more
strength than the others its li is larger than the others. Con-
sequently, for �y1 l0�0, and deviations from Eq. �29� and
��0 extension are visible. This can explain the straight hori-
zontal line Nc=1 independent of Nd in Fig. 3, which is due to
Nc=Nd0

=1.
Figure 21 demonstrates the changing of the ZLS regimes

in the �Nd ,Nc� parameter space as � sails from 1 toward 0. As
� becomes smaller the less lines appear and � grows, until
�=0.1 where only two wide lines remain Nc=Nd and Nc
=Nd0

=1.
One can also see deviations from Eq. �29� with no exten-

sions for specific sets of �, � and a. For the scenario of single
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FIG. 19. �Color online� Simulation results of the correlation, Eq.
�20�, for two mutually coupled semiconductor lasers �details in the
text�. Panel �a� for four delays Nd=3,4 ,5 ,20 ns and panel �b� for
six time delays Nd=11,12,13,14,15,16 ns.
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FIG. 20. A schematic of two mutually coupled units at a dis-
tance Nc with one self-feedback with a delay equals to Nd, and with
additional delay Nd0

=1 due to the internal dynamics.
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self-feedback and single mutual coupling we run on Nc and
−d=−a��1−�� for fixed a�1−��=0.3, a��=0.77 and Nd
=10, see Fig. 22. We find out that as expected the peaks do
not always occur exactly where Eq. �9� is fulfilled. For in-
stance, one peak in Fig. 22 occurs in Nc=62 and −d=
−a��1−��=0.167. Simulations and semianalytical calcula-
tion of the ZLS in the �Nd ,Nc� parameter space with those

parameters, are depicted in Fig. 23, indicating that the line
described by Nc=5Nd deviates to Nc=5Nd+1 and the line
Nc=6Nd deviates to Nc=6Nd+2. Those deviations are due to
the local self-feedback.

The same two effects of deviations and extension are
demonstrated in Figs. 24�a� and 24�b� which corresponds to
the case of multiple self-feedbacks with the parameters of
Figs. 8�a� and 8�b� relatively.

This phenomenon that the internal dynamics can be ex-
pressed as Nd0

=1 is relevant to maps but not to differential
equations, such as the Lang-Kobayashi equations. For differ-
ential equations the internal dynamics is due to the state of
the system at time t−dt where dt→0. For instance in the
examined cases of the mutually coupled chaotic lasers, Sec.
VI, dt�10−13 s and the delays are of the order of O�1 ns�.

VIII. DETUNING

The equations of two mutually coupled Bernoulli maps, X
and Y, with two different slopes, are given by Eqs. �1� with
ax and ay, respectively. In this case the analytical solution
indicates that ZLS is achieved only for �=1, �=0.5 inde-
pendent of ax and ay. For these parameters there is no inter-
nal dynamics, the self-feedback and the mutual coupling
have the same strength and therefore X and Y are synchro-
nized. Since for ax�ay the synchronized state is not a solu-
tion of the dynamics, we have numerically examined the
difference between the two trajectories for fixed ax=1.1 and
three values of ay =1.12,1.2,1.5. Figure 25 depicts the re-
gion in the parameter space �� ,�� where the difference be-
tween Xn and Yn averaged over the last 30 000 time steps is
less than 0.01, panel �a� and less than 0.001, panel �b�. Re-
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FIG. 21. �Color online� Simulations and semianalytical results
for the ZLS points in the parameter space �Nd ,Nc� with a
=1.1, �=0.4 �a� �=0.9, �b� �=0.7, �c� �=0.6, �d� �=0.5, �e� �
=0.4, �f� �=0.3, �g� �=0.2, �h� �=0.1.
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FIG. 22. �Color online� �Nc ,−d� parameter space for the param-
eters a�1−��=0.3, a��=0.77 and Nd=10. The area between the
straight line and the curve is where ZLS is achieved.
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FIG. 23. �Color online� �Nc ,Nd� parameter space for the param-
eters a�1−��=0.3, a��=0.77 and −d=−a��1−��=0.167.
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FIG. 24. �Color online� �Nc ,−d� parameter space for the same
parameters as in Figs. 8�a� and 8�b� relatively. The vertical lines
corresponds to the graphs shown in Figs. 8�a� and 8�b�.
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sults indicate that the region in the parameter space increases
as ay −ax decreases. Similar detuning was experimentally ex-
amined on semiconductor lasers in �40�.

IX. DISCUSSION

The main conclusion of this paper is that when using ad-
ditional delays ZLS is achieved when the delays follow Eq.
�38�. Therefore, additional delays enlarge the range of
Ndi

,Ncj
for which ZLS is achieved. We end this paper with a

possible physical argument to understand the condition for
the emergence of ZLS in the above mutually coupled chaotic
units. Each chaotic unit absorbs signals from the history of
its own dynamics and from the history of the dynamics of its
mutually coupled partner. The output of the chaotic unit
blends in a nonlinear fashion the entire input signals together
with the current state of the unit itself. For a moment, let us
forget the chaotic behavior of the unit and let us assume that
the unit acts as a fully transparent unit and/or as a mirror. In
such a case, Eq. �5� immediately reveal that the condition

Nc=Nd is fulfilled, by passing few times through the units.
The fact that the unit is chaotic is expressed in the change of
the structure of the chaotic signal, where the shifted correla-
tion function, defined in Eq. �20�, reveals some correlations
following all periodicity as transparent unit or as a mirror.
This is a generic phenomenon which has applications to
communication since it is no longer needed to demand Nc
=Nd or know precisely the distance between the two sys-
tems. As to nonidentical units, which have different sets of
�Ndi

�, the delays must follow Eq. �37� and the units are syn-
chronized with a shift. However, extensions to networks con-
sisting of more than two units are still an open question and
deserves further research.
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APPENDIX

Let us consider the simple system of two mutually
coupled units with single self-feedback and single mutual
coupling, described by the characteristic polynomial �4�. One
solution of the system at the edge of synchronization, 
c
=1,
is �=0, a solution which is always valid and independent of
the delay times. However, for �→0 we can calculate an
upper bound for l of Eq. �9� and also the corresponding up-
per bounds for li-values for extended systems. Analog to Eq.
�7� we split the characteristic polynomial into a real and an
imaginary parts and get

cos��Nc� = a�1 − ��cos���Nc − 1�� + a�� cos���Nc − Nd��

− a��1 − �� ,

sin��Nc� = a�1 − ��sin���Nc − 1�� + a�� sin���Nc − Nd�� .

�A1�

By rearranging those equations and using the approximation
sin�x��x for x→0 one can get an upper bound for Nc,

Nc =
a�2� − 1� + 1

a − 1
Nd +

2a�1 − ��
a − 1

, �A2�

By comparing Eqs. �A2� and �9� we can easily see that we
also gain an upper bound for l with this formula.
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